89 research outputs found

    Relating Graph Thickness to Planar Layers and Bend Complexity

    Get PDF
    The thickness of a graph G=(V,E)G=(V,E) with nn vertices is the minimum number of planar subgraphs of GG whose union is GG. A polyline drawing of GG in R2\mathbb{R}^2 is a drawing Ξ“\Gamma of GG, where each vertex is mapped to a point and each edge is mapped to a polygonal chain. Bend and layer complexities are two important aesthetics of such a drawing. The bend complexity of Ξ“\Gamma is the maximum number of bends per edge in Ξ“\Gamma, and the layer complexity of Ξ“\Gamma is the minimum integer rr such that the set of polygonal chains in Ξ“\Gamma can be partitioned into rr disjoint sets, where each set corresponds to a planar polyline drawing. Let GG be a graph of thickness tt. By F\'{a}ry's theorem, if t=1t=1, then GG can be drawn on a single layer with bend complexity 00. A few extensions to higher thickness are known, e.g., if t=2t=2 (resp., t>2t>2), then GG can be drawn on tt layers with bend complexity 2 (resp., 3n+O(1)3n+O(1)). However, allowing a higher number of layers may reduce the bend complexity, e.g., complete graphs require Θ(n)\Theta(n) layers to be drawn using 0 bends per edge. In this paper we present an elegant extension of F\'{a}ry's theorem to draw graphs of thickness t>2t>2. We first prove that thickness-tt graphs can be drawn on tt layers with 2.25n+O(1)2.25n+O(1) bends per edge. We then develop another technique to draw thickness-tt graphs on tt layers with bend complexity, i.e., O(2tβ‹…n1βˆ’(1/Ξ²))O(\sqrt{2}^{t} \cdot n^{1-(1/\beta)}), where Ξ²=2⌈(tβˆ’2)/2βŒ‰\beta = 2^{\lceil (t-2)/2 \rceil }. Previously, the bend complexity was not known to be sublinear for t>2t>2. Finally, we show that graphs with linear arboricity kk can be drawn on kk layers with bend complexity 3(kβˆ’1)n(4kβˆ’2)\frac{3(k-1)n}{(4k-2)}.Comment: A preliminary version appeared at the 43rd International Colloquium on Automata, Languages and Programming (ICALP 2016

    Linear-Space Data Structures for Range Mode Query in Arrays

    Full text link
    A mode of a multiset SS is an element a∈Sa \in S of maximum multiplicity; that is, aa occurs at least as frequently as any other element in SS. Given a list A[1:n]A[1:n] of nn items, we consider the problem of constructing a data structure that efficiently answers range mode queries on AA. Each query consists of an input pair of indices (i,j)(i, j) for which a mode of A[i:j]A[i:j] must be returned. We present an O(n2βˆ’2Ο΅)O(n^{2-2\epsilon})-space static data structure that supports range mode queries in O(nΟ΅)O(n^\epsilon) time in the worst case, for any fixed ϡ∈[0,1/2]\epsilon \in [0,1/2]. When Ο΅=1/2\epsilon = 1/2, this corresponds to the first linear-space data structure to guarantee O(n)O(\sqrt{n}) query time. We then describe three additional linear-space data structures that provide O(k)O(k), O(m)O(m), and O(∣jβˆ’i∣)O(|j-i|) query time, respectively, where kk denotes the number of distinct elements in AA and mm denotes the frequency of the mode of AA. Finally, we examine generalizing our data structures to higher dimensions.Comment: 13 pages, 2 figure

    Toward the Rectilinear Crossing Number of KnK_n: New Drawings, Upper Bounds, and Asymptotics

    Get PDF
    Scheinerman and Wilf (1994) assert that `an important open problem in the study of graph embeddings is to determine the rectilinear crossing number of the complete graph K_n.' A rectilinear drawing of K_n is an arrangement of n vertices in the plane, every pair of which is connected by an edge that is a line segment. We assume that no three vertices are collinear, and that no three edges intersect in a point unless that point is an endpoint of all three. The rectilinear crossing number of K_n is the fewest number of edge crossings attainable over all rectilinear drawings of K_n. For each n we construct a rectilinear drawing of K_n that has the fewest number of edge crossings and the best asymptotics known to date. Moreover, we give some alternative infinite families of drawings of K_n with good asymptotics. Finally, we mention some old and new open problems.Comment: 13 Page

    A (7/2)-Approximation Algorithm for Guarding Orthogonal Art Galleries with Sliding Cameras

    Full text link
    Consider a sliding camera that travels back and forth along an orthogonal line segment ss inside an orthogonal polygon PP with nn vertices. The camera can see a point pp inside PP if and only if there exists a line segment containing pp that crosses ss at a right angle and is completely contained in PP. In the minimum sliding cameras (MSC) problem, the objective is to guard PP with the minimum number of sliding cameras. In this paper, we give an O(n5/2)O(n^{5/2})-time (7/2)(7/2)-approximation algorithm to the MSC problem on any simple orthogonal polygon with nn vertices, answering a question posed by Katz and Morgenstern (2011). To the best of our knowledge, this is the first constant-factor approximation algorithm for this problem.Comment: 11 page
    • …
    corecore